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SUMMARY 

A new method for refining three-dimensional (3D) NMR structures of proteins is described, which takes 
account of the complete relaxation pathways. Derivatives of the NOE intensities with respect to the dihedral 
angles are analytically calculated, and efficiently evaluated with the use of a filter technique for identifying 
the dominant terms of these derivatives. This new method was implemented in the distance geometry pro- 
gram DIANA. As an initial test, we refined 30 rigid distorted helical structures, using a simulated data set of 
NOE distance constraints for a rigid standard or-helix. The final root-mean-square deviations of the refined 
structures relative to the standard helix were less than 0. I A, and the R-factors dropped from values between 
7% and 32% to values of less than 0.5% in all cases, which compares favorably with the results from distance 
geometry calculations. In particular, because spin diffusion was not explicitly considered in the evaluation of 
'exact' t H ~H distances corresponding to the simulated NOE intensities, a group of nearly identical distance 
geometry structures was obtained which had about 0.5/~ root-mean-square deviation from the standard ~t- 
helix. Further test calculations using an experimental NOE data set recorded for the protein trypsin inhibitor 
K showed that the complete relaxation matrix refinement procedure in the DIANA program is functional 
also with systems of practical interest. 

I N T R O D U C T I O N  

For  the first phase of  the de te rmina t ion  of  the three-dimensional  (3D) s tructure of  biological 

macromolecules  in solut ion from N M R  data,  one relies usually on distance geometry methods  

Abbreviations." RMSD, root-mean-square deviation: NOE, nuclear Overhauser enhancement: NOESY, 2-dimensional nu- 
clear Overhauser enhancement spectroscopy; CPU, central processing unit. 

"On sabbatical leave from Cray Research, Inc., 655E Lone Oak Road, Eagan, MN 55121, U.S.A. 

0925-2738/$ 5.00 ~! 1991 ESCOM Science Publishers B.V. 



258 

(Braun et al., 1981, 1983: Havel and Wfithrich, 1984, 1985; Braun and G6, 1985; Wiithrich, 1986; 
Braun, 1987: Kaptein et al., 1988: Bax, 1989: Clore and Gronenborn,  1989a; Kuntz et al., 1989). 
The distance geometry structures are then refined either by restrained energy minimization 
(Billeter et al., 1990: Schaumann et al., 1990) or by restrained molecular dynamics calculations 
(Kaptein et al., 1985: Brfinger et al., 1986). In the preparation of the input of  distance constraints 
corresponding to the measured NOE intensities, both spin diffusion effects and the influence of 
internal mobility are usually either neglected or implicitly accounted for by a conservative calibra- 
tion of the relation between NOEs and IH-IH distances (Braun et al., 1981; Wiithrich, 1986; Kline 
et al., 1988). A quantitative assessment of the consequences of  this "initial slope approximation'  
on the NMR structures calls for a complete relaxation matrix treatment with dynamic molecular 
models. This problem has been discussed extensively on the level of  IH-IH distances or N MR re- 
laxation rates (Clore and Gronenborn,  1989b; Madrid et al., 1989; Baleja et al., 1990; Borgias et 
al., 1990: Koehl and Lef~vre, 1990; Post et al., 1990), but proper answers will have to rely on the 
development of robust refinement programs based on complete relaxation matrix treatments. 
Currently available procedures (Dobson et al., 1982: Keepers and James, 1984; Olejniczak et al., 
1986: Borgias and James, 1988: Boelens et al., 1989; Yip and Case, 1989; Baleja et al., 1990; 
Borgias et al., 1990) work either in distance space or in Cartesian space. For  example, Keepers 
and James (1984) and Boelens et al. (1989) proposed distance space methods that yield an im- 
proved set of distances from the measured NOE data and seem to be quite robust with respect to 
initial trial structures. However, to improve the atomic coordinates of the molecular structure, 
these investigators still rely on distance geometry or restrained molecular dynamics. For  the real- 
space methods (Borgias and James, 1988; Yip and Case, 1989; Baleja et al., 1990) practical expe- 
rience with the refinement of protein structures still has to be gathered, and a gradient-based 
refinement technique has been. described only very recently (Yip and Case, 1989). As a further 
contribution to the techniques available for investigations of the aforementioned fundamental 
problems, the present paper proposes the use of analytically calculated derivatives of the NOE in- 
tensities with respect to the intervening dihedral angles implemented for structure refinements 
with the program DIANA (Giintert et al., 1991a). 

The method introduced here takes the complete relaxation pathways into account. Evaluation 
of the derivatives is based on the rapid calculation of derivatives in dihedral angle space by Abe 
et al. (1984) and on the calculation of derivatives in Cartesian coordinates as described by Yip and 
Case (1989). It has some similarity to previous relaxation matrix treatments (Borgias and James, 
1988), but a decisive advantage of the present approach lies in the fact that it uses analyticall)' cal- 
culated derivatives in dihedral angle space. We describe here the mathematical basis for the ana- 
lytical calculation of the derivatives and its implementation in the program DIANA. We then 
show that the extended version of DIANA can be used in practice for refinement of  proteins, first 
with a simulated data set of NOE distance constraints for a rigid helical polypeptide, and then 
with a trial refinement of a group of distance geometry structures of the trypsin inhibitor K using 
an experimental data set. 
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Evaluation of derivatives with respect to dihedral angles 

In a N O E S Y  experiment ,  the cross relaxation during the mixing time r,~ can be described by the 
Bloch equat ions  (Solomon,  1955; Macura  and Ernst, 1980) 

- RlCl(t) 
dt 

(I) 

1r is the difference between the magnetization at time t and the thermal equilibrium magnetiza- 
tion, and the tilde denotes that the sum of the magnetizations of a group of equivalent spins is 
considered. The relaxation rates, R~t, are the result of zero-quantum, single-quantum and double- 
quantum transitions induced by dipole-dipole interactions among all protons of the polypeptide 
chain, except that the leakage relaxation rate, Ws, accounts for all other relaxation mechanisms 
(Tropp, 1980; Ernst et al., 1987) 

" ~ " 1  . R I R~,. = x//n~n~ r~6. (s # t) R~.,~. = n ~  ~K' + (2) 

where 

;,4h2rc ( 6 I) 
xl - 10 1 + 4~,)'r~ 

3 0 )  7 h-r~ I + , 2 + - , , 
~'-' - 10 I + , ) ' r~ I + 4oJ-r~ 

(3) 

The indices s and t run over all groups o f  chemical shift-equivalent spins, and n~ is the number  of  
equivalent  spins per group (e.g., n, = 1 for single protons,  n~ = 3 for methyl groups). 0~ is the Lar- 
mor  frequency,  and r~ is the effective rotat ional  correlat ion time. In all calculations described in 
this paper,  R~ is set to zero. Since leakage relaxation can to a good approximat ion  be treated as 
independent  of  the molecular  conformat ion ,  it can readily be added for the t reatment  of  actual ex- 
perimental  data.  Equat ions  (2) and (3) ensure that the relaxation matrix is symmetric,  i.e., 
R~,= Rt~. The solution o f  Eq. (1) is obtained by diagonalizing the rate matrix, R (Dobson et al., 
1982; Keepers  and James, 1984: Olejniczak et al., 1986) 

1Vl(Z'm) = Oe -~'rm O -  11~'I(0) (4) 

where X is the diagonal  matrix o f  eigenvalues ki, and O is the or thogonal  matrix o f  eigenvectors 
of  the relaxation matr ix R. The calculated NOE cross-peak intensities, Icij, are the elements of  the 
matr ix Oe -x~m O -  i 

li% = ,~_OikOfite -ak~m (5) 
k 
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To refine the structure against the measured NOE intensities, the following term T will be mini- 
mized: 

T = ~k(I~ - qI~j) 2 (6) 
l,J 

where the sum runs over the observed NOE intensities, and I ~ and I. r u ,j are the observed and the cal- 
culated NOE cross-peak intensities, respectively. The scaling factor q is a proportionality con- 
stant between the measured and calculated NOE intensities, and is chosen such that the target 
function is minimized for given values of I~ and I~j: 

~i'Jli~ (7) 
q = Ei.jliCjliej 

As isdescribed in the following section, the full relaxation matrix minimization was imple- 
mented in the distance geometry program DIANA (G/.intert et al., 1991a), which works in dihed- 
ral angle space. To this end, the term T in Eq. (6) has to be written as a function of  the dihedral 
angles. Its derivative with respect to a dihedral angle ~a thus becomes 

dT _ OI~j 
= ~.~hij ~, (8) 

where hij = - 2kq(I~ - qI~j). For  distance geometry calculations in dihedral angle space it is essen- 
tial to have a powerful method for calculating derivatives with respect to dihedral angles (Braun 
and G6, 1985). Abe et al. (1984) have shown that, for a symmetric pair potential ~P(ral3), where 
ral3 = Ir~-r131 and ra and r13 are the position vectors of the atoms ct and 13, the dihedral angle deriva- 
tives can efficiently be evaluated through general recurrent equations. Parts of this method can be 
adapted for use with the more complex situation of Eq. (6). 

Using Eq. (5) in Abe et al. (1984), we express Eq. (8) as 

c~T 
- -  = %p(r~ - ra) (9) - e a "  Z %a( r, A ra) -- (e,  A r~(a)) ",~ zM_a 

aeMa 
fleMa fl~M a 

where ea is a unit vector along the rotatable bond a, at~d r~(a)is the end point of  the rotatable bond 
a. Ma is the set of all those atoms for which the coordinates are affected by a change in ~ba, and 
M a is the set of all other atoms in the molecule. The calculation of  the derivative therefore reduces 

1 d~o(r~a) 
to the evaluation of%a = 

r~a dr~a 

_- y hij 
c~ - -  - -  (10) 

i.j r~ Or~fl 
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Following Yip and Case (1989), the expression OI[j is 
Or,p 

?l~j __ OR~, 
~r~t~ ~.~.,.,~ O~O~1~O,.O.-ilf~. (11) 

where 

e - 2 r r r n  - -  e - 2 u r m  

f~ = (r r u) frr = --'t'm e-'~rrm (12) 

~Rst 
The elements of are evaluated with the use of Eq. (2), and from Eqs. (10) and (11) we obtain 

~r~r 

where 

c,# _ 6r-p8 y" -1  ,p = .. ~ h~jO~O.j g~.f~. (13) 
l , J  f , U  

g~ = ~ a h - l ( O L l O a u  + O~10,,)  + x2(n,O~Oa,  + npOr] lOJ  - (14) 

The summations over r and u are both over the dimension of the relaxation matrix. Because g~ = 
g,~. Eq. (13) can be rewritten as 

c~ -6r~-p 8 h~j Oi~O~l~'~f + ~. (O~O~ + O~,O~ t)gj~,  (15) 
�9 " u < t  �9 

Combined with Eq. (9) this expression yields the desired derivatives. As has been shown previous- 
ly (Abe et al., 1984; Braun and G6, 1985), Eq. (9) can be efficiently evaluated if ca!3=cl3a. Since 
g~ P" = gru, it is apparent that this condition holds. 

Implementation in the program DIANA 

Using the expressions derived in the previous section, we implemented the refinement proce- 
dure in the program DIANA (Gfintert et al., 1991a). The target function to be minimized in the 
expanded version of DIANA consists of the sum of the previously described DIANA target func- 
tion (Eq. (6) in Gfintert et al., 1991a) and the term of Eq. (6) in this paper�9 

The memory required by the modified DIANA program is about 6 megawords for a good expe- 
rimental NOE distance constraint set of a protein with 60 amino-acid residues. A significant por- 
tion of the memory is used to store x /~Or ,  and x/f~Oau . If memory becomes a limiting factor, 
these values can be recomputed and are not stored, but in this CPU-intensive scheme the calcula- 
tion is approximately three times slower than for the memory-intensive version. 

In order to make the gradient calculation practical with respect to CPU time, a filter technique 
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is used that avoids the computation of negligibly small contributions to the target function term 
of Eq. (6) and its gradient. The details of this filter technique and of the treatment of diastereotop- 
ic substituents are given in the following sections. 

Efficient gradient calculation using a filter technique 

As Yip and Case (1989) pointed out, the analytical expression for the derivatives is computatio- 
nally demanding, as the time needed to evaluate the derivatives is determined by the number of ex- 
pressions computed in the summations of Eq. (15): 

n~(n,- 1) 
n~npni + 2 npni (16) 

where 
n r = dimension of the relaxation matrix 
np -- number of spin pairs in the relaxation matrix 
n i = number of intensities in the observed data set 

(17) 

Fortunately, the computation time can be reducedbased on the sparsity of nonvanishing terms in 
the summations over both the dimensions in the matrix, r and u, and the number of spin pairs, ct 
and 13. This is achieved by continuous monitoring of the magnitudes of g~ in Eq. (14) and the 
terms 

0~0~ ~f. (18) 

(19) 

from Eq. (15). Only the values are retained that contribute significantly to the final derivatives in 
the summation. In practice, this is achieved by defining a cutoff, 51, so that only absolute values 
of the expressions in Eqs. (18) and (19) greater than 51 are included in the summation of Eq. (15). 
An analogous cutoff, 82, is defined for g~ of Eq. (14). With this filter technique, computation of 
the analytical derivatives is more efficient than a numerical calculation using a difference approxi- 
mation, since the numerical computation is dominated by th e diagonalization of the relaxation 
matrix R, and two diagonalizations are required for each dihedral angle. To further document the 
efficiency of this filter technique, the Results section will present CPU times measured in actual 
structure refinements (Table 1 ). 

Treatment of pairs of diastereotopic substituents without individual assignments 

In the program DIANA, chemical-shift-equivalent spins can be treated as pseudoatoms 
(Wfithrich et al., 1983), and the different representations of the spins to be used in Eqs. (I-3) for 
different types of protons are specified in the input list of NOE intensities. For example, the three 
protons in a methyl group are treated as one pseudoatom positioned at the geometric center of the 
protons. Experimental NOE intensities that do not contribute to the dihedral angle derivatives 
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TABLE 1 
INFLUENCE OF THE FILTER PARAMETERS 8~ AND fi2 ON THE CPU TIME AND ON THE ACCURACY OF 
THE CALCULATION OF THE DERIVATIVES WITH RESPECT TO DIHEDRAL ANGLES IN EQ (15) 

CPU time (sp Deviation b 

Sio--*So c 8Z = [0 -~ 52 = 10 -4 52 = I0 -' RRMSD max (rad -I) 

81 = 10 ~ 15.1 14.6 12.4 0.000 0.005 
81 = 10 ~ 8.1 7.8 6.8 0.006 0.055 
81 = 10 3 2.9 2.8 2.6 0.049 0.558 

lnhibitorK d 52= 10 ~ 8 , =  10 -3 82= l0 -I 

81 = 10 s 1583 1472 699 0.009 4.300 
81 = 10 4 388 332 168 0.045 12.49 
81 = 10 -3 37 36 28 0.297 104.0 

All CPU times are for the calculation of the gradient of the target function, which is the most time-consuming step in 
each iteration. They were measured on a Cray X/MP using one processor. 

h The relative root-mean-square deviation (RRMSD) is defined as 

x / ~ a  ] g fa -  g]12.gr 

and is the derivative of the target function with respect to ~, obtained using the filter values indicated, g~ is the exact 
value obtained without filtering for the example S~a~So, and an estimate in the case of the inhibitor K, respectively. The 
maximal deviation, max, is defined as maxs - g~l, and is given in units of rad ~. The numbers listed in" the Table are 
for the combinations of the 8~-values with 8,= 10 -2 for the example S~---.So. and with 82= 10 -3 for the inhibitor K. 
respectively (For the values presented in Table 1, the effect of 8~ on RRMSD and max was much larger than the effect 
of 82). 

~ Refinement of one of the conformers in the group S~o vs. the simulated,data set for So (see text). The error assessments 
RRMSD and max are relative to the derivatives calculated.without any filtering, which took 40 s CPU time. 

'~ The error assessments are relative to the derivatives calculated with 8~ = 10 ~ and 82 = I0 --~. 

(e.g.,  c ross  peaks  b e t w e e n  g e m i n a l  p r o t o n s )  a re  a u t o m a t i c a l l y  e l i m i n a t e d .  U n l e s s  specif ical ly  re- 

q u e s t e d  o the rw i se ,  the  subs t i t uen t s  o f  p r o c h i r a l  cen te r s  ( [3-methylene p r o t o n s  and  the m e t h y l  

g r o u p s  o f  l euc ine  and  va l ine)  and  the  r ing  p r o t o n s  o f  t y ros ine  and  p h e n y l a l a n i n e  are  t r ea ted  indi-  

v idua l ly .  W h e n  s e p a r a t e  N O E  in tens i t ies  can  be  m e a s u r e d  for  two  d i a s t e r e o t o p i c  subs t i t uen t s  tha t  

h a v e  n o t  been  s t e reospec i f i ca l ly  ass igned ,  the t a rge t  f u n c t i o n  is c a l cu l a t ed  twice  for  the two  pos-  

s ible i n d i v i d u a l  a s s i g n m e n t s ,  a n d  the  a s s i g n m e n t  tha t  yields the  sma l l e r  t a rge t  f u n c t i o n  is used.  I f  

the  p o l y p e p t i d e  s tud ied  inc ludes  m u l t i p l e  pa i rs  o f  d i a s t e r e o t o p i c  l igands  w i t h o u t  s te reospec i f ic  as- 

s i g n m e n t s ,  each  p e r m u t a t i o n  o f  two  ind iv idua l  a s s i g n m e n t s  is t r ea ted  as be ing  i n d e p e n d e n t  o f  the  

i nd iv idua l  a s s i g n m e n t s  for  the  subs t i t uen t s  in all o t h e r  p r o c h i r a l  centers .  E x p e r i e n c e  s h o w e d  tha t  

it is suff ic ient  to p e r f o r m  this p e r m u t a t i o n  p roces s  o n c e  in every  ten m i n i m i z a t i o n  steps.  

R E S U L T S  

T h i s  sec t ion  r epo r t s  on  ini t ia l  tests o f  the  m o d i f i e d  ve r s ion  o f  the D I A N A  p r o g r a m  tha t  in- 

c ludes  the  t e r m  o f  Eq.  (6). F o r  these  tests we used e i the r  a hel ica l  p o l y p e p t i d e  wi th  a s i m u l a t e d  
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data set of NOE intensities, or a globular protein with 57 amino-acid residues, the protease inhibi- 
tor K, with an experimental data set. 

Simulated refinement o/'a 15-residue ~-helix 

The polypeptide segment used here was 

-Glu-Leu-Ala-His-Met-Ala-Asn-Gln-Ala-Ala-Glu-Ala-Ile-Leu-Lys- (20) 

which corresponds to an a-helix in the designed a-protein FELIX (Hecht et al., 1990). The ob- 
served data set of NOE intensities, Ii~ was generated by calculating these intensities for the rigid 
geometry of a conformation So of the polypeptide (20), where the polypeptide backbone forms a 
standard c~-helix, and the side chains adopt any one of the sterically allowed spatial arrangements. 
This molecular geometry was obtained by minimizing the target function in the standard DIANA 
program (Gfintert et al., 1991a) with distance constraints enforcing the Oi-.-HNi+ 4 hydrogen 
bonds, Van der Waals constraints, and dihedral angle constraints for a regular a-helical polypept- 
ide backbone, i.e., q~ = -57  + 1 ~ and V = - 4 7  + I ~ For the amino-acid side chains, only the van 
der Waals constraints were imposed. In addition, three groups of ten molecular geometries each, 
S~0, $20 and $30, were generated, starting from randomized conformers of the polypeptide (20) and 
minimizing the standard DIANA target function against data sets consisting of the van der Waals 
constraints and backbone dihedral angles constraints, where tpi and Vi were allowed to vary indi- 
vidually over ranges of + 10 ~ +20 ~ and _+30 ~ respectively, about the standard a-helix values 
used for So. 

To explore parameter sets that would allow performing the relaxation matrix refinements with 
reasonable use of computing time, we first examined the effects of the aforementioned filtering in 
the calculation of Eq. (15) on the derivatives and the computation time. Values of 81 and 82 rang- 
ing from 10 -6 to 10 -2 were used (Table 1). The derivatives were calculated in the refinement of 
one of the St0 conformers against the So data set. The NOESY mixing time was taken to be 40 ms, 
and only dipolar spin-spin interactions with distances shorter than 5.0 ,~ were considered. While 
the errors in the derivatives increased significantly for increasing values of S1, it was tbund that the 
various values of 82 had little effect on the errors (not shown in Table 1), although the computa- 
tion time is reduced for larger values of 62. In the following studies with the helical polypeptide 
(20), we used values ofTi = 10 -4 and 82 = 10 -4. As an alternative, which would be reminiscent of 
the general strategy of the variable target function approacla used by DIANA (Gfintert et al., 
1991a), one could start the refinement with relatively large values of 8j and 82, and then gradually 
decrease these values during the minimization. This,~hould further improve the efficiency of the 
computation. 

Using the aforementioned filters, each of the 30 structures in the groups St0, $20 and $30 was re- 
fined against a data set consisting of all NOE intensifies calculated for So and all van der Waals 
constraints for the polypeptide (20), using the conjugate-gradient minimizer in DIANA. Twenty- 
nine of the structures were brought directly to the So structure. One of the $30 conformers was ini- 
tially trapped in a local minimum. By altering the balance of the contributions of the van der 
Waals terms and the NOE intensity terms to the target function, the conformation went to the So 
structure, too. Table 2 shows a summary of this simulation. In the refined data, the small devia- 
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TABLE 2 
RELAXATION MATRIX REFINEMENT OF THE POLYPEPTIDE (20) AGAINST THE DATA SET So FOR A 
STANDARD a-HELIX, STARTING WITH TEN DISTORTED a-HELICES FROM EACH OF THE THREE 
GROUPS Sio, S.,o AND S~0" 

Refinement b RMSD (A)" R-factor (%p 

Backbone All heavy atoms 

Sio 0.52 (0.33...0.69) 0.69 (0.45...0.85) I0.1 (7.19...12.3) 
Sio---'So 0.00 (0.00...0.01) 0.02 (0.01...0.03) 0.09 (0.07...0.14) 
S.,o 0.94 (0.46...2.02) 1.34 (0.69...3.34) 19. I ( 15.8...24. I ) 
S,,o--* So 0.01 (0.00...0.01) 0.05 (0.04...0.07) 0.20 (0.10...0.38) 
$30 1.08 (0.67...2.38) 1.65 (0.96...3.90) 26.2 (18.6...32.1) 
$3o--*So 0.01 (0.00...0.02) 0.08 (0.05...0. I1) 0.28 (0.44...0.50) 

DG refined 0.45 (0.45...0.45) 0.61 (0.60...0.61) 13.8 ( 13.8... 13.8) 

'~ See text for a precise definition of So, Sin, S.,o and $30. 
,Sm are the starting structures in the group Sin, Sm---,S0 are the same structures after refinement against the data set So. DG 

refined indicates that all 30 conformers of the groups Sin, $20 and $3o were refined against a set of distance constraints 
derived from the NOE intensity data set So without explicit allowance for spin diffusion. 

" All RMSD values are averages of the pairwise RMSDs between the individual conformers in each group relative to the 
structure So. The pairs of conformers were superimposed either for minimal RMSD calculated for the backbone atoms 
N, C" and C', or for all heavy atoms. 

, ,  R Z,.~l(l ,% - wlr~l l  
- x I00 

Ei.jl~'j 

t ions f rom the So s t ruc ture  are due  to the l imited n u m b e r  o f  min imiza t ion  steps pe r fo rmed  and not  

to the lack o f  comple t e  convergence .  

In o rde r  to more  closely a p p r o x i m a t e  the s i tua t ion  o f  an exper imenta l  set o f  N O E  intensit ies,  

we a d d e d  r a n d o m  var ia t ions  to the exact  da t a  set So. The reby  each o f  the N O E  intensi t ies  in So, 

I~ was modi f ied  as 

I,~ = l~ + v~j) (21) 

where  vii are  r a n d o m ,  un i fo rmly  d i s t r ibu ted  var iables  in the interval  [ - a , a ] .  All  ca lcu la t ions  

s ta r ted  f rom a c o n f o r m e r  in the g r o u p  $30, and  a was incremented  f rom 0.025 to 0.25 in steps o f  

0.025. As  expected ,  the initial  and  final R- fac to r s  increased with increas ing r a n d o m  errors  in the 

N O E  intensi ty  d a t a  set, i.e. f rom 30.0 to 40.9%, and f rom 2.1 to 19.7%, respectively.  Likewise,  the 

R M S D s  between the refined s t ructures  and  So increased with increas ing r a n d o m  errors  in the in- 

tensit ies ( f rom 0.04 to 0.32 ,~, for the b a c k b o n e  a toms,  and  f rom 0.11 to 0.52 ~, for all heavy 

a toms) ,  but  the dev ia t ions  were smal ler  than what  one would  ob ta in  by genera t ing  s t ructures  

r a n d o m l y  and  selecting s t ruc tures  with s imi lar  R-fac tors .  F o r  example ,  the final R - f ac to r  in the 

ref inement  with a = 0.25 was a r o u n d  20%, which is in the range  o f  the unrefined $20 confo rmers  

(Table  2), but  the c o r r e s p o n d i n g  R M S D  values o f  0.32 ,~ for  the b a c k b o n e  a t o m s  and  0.52 A for 

all heavy a t o m s  are  s ignif icant ly smal ler  than  the range o f  R M S D  values for the confo rmers  o f  the 

set $20 (Table  2). 
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To assess the benefits of  using the complete relaxation matrix refinement relative to a much fas- 

ter distance geometry refinement that does not explicitely allow for spin diffusion, we computed 
a set of  NOE distance constraints from the simulated NOE intensities for the helical structure So 

of the polypeptide (20). Exact distance constraints, i.e., equal upper and lower bounds, were de- 

rived assuming the relationship 

j 1 ~ '  ~tj/>O (22) 

between the NOE intensity, I, and the corresponding I H -  IH distance, d, of  the helical structure 
So. Separate fits for the coefficients aj were made for NOE intensities between single protons,  and 

NOEs involving methyl groups, respectively (Fig. 1). For  given NOE intensities, the correspond- 
ing distances were then calculated using these calibration curves by solving Eq. (22) for the dis- 

tance d with a Newton method. Using this distance constraint set for So, all 30 structures from the 

three groups si0, $20 and $30 were minimized with the program DIANA.  Weighting factors of  0.1 
were used for the NOE distance constraints, and during the calculation the weight for the van der 
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Fig. 1. Plot of the relative NOESY intensities versus the corresponding ~H 'H distances for the standard a-helix structure 
So of the polypeptide (20) (see text). Circles refer to pairs of single protons, crosses to pairs that include at least one methyl 
group. The solid line and the dashed line are the best-fit curves for the NOE intensity vs. ~H-tH distance calibration for 
these two situations (see text). 
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Waals constraints was increased from 1.0 to 2.0 to 5.0. All 30 structures converged to the same 
final conformation, with pairwise RMSDs between different solutions of 0.01 ,~ for the backbone 
and 0.07 ,~, for all heavy atoms. However, this refined structure differed from the target structure 
So by RMSD values of 0.45 ,~ for the backbone atoms, and 0.61 ,~ for all heavy atoms. 

Trial relaxation matrix refinements of experimental NMR structures of the inhibitor K 

The studies with this globular protein (M = 6000) were added to obtain an initial impression of 
the performance of the modified DIANA program in a 'real-life situation'. In the data set for the 
inhibitor K (K. Berndt, P. Gfintert and K. Wfithrich, unpublished work), there are 922 measured 
NOE intensities that contributed to Eq. (6), and a total of 376 proton spins. The NOESY spectra 
were recorded with a mixing time, ~m, of 40 ms. By neglecting dipolar interactions for distances 
longer than 5.0 ,&, we found that values of 81 = 5 • 10 -4 and 82= 10 -2 provided a good balance 
between a reasonable amount of computation time and accuracy of the calculated derivatives. 
Ten conformers of the inhibitor K obtained from standard distance geometry calculations with 
the program DIANA (Giintert et al., 1991a) were selected as starting conformations for a com- 
plete relaxation matrix refinement with these parameters, and each conformer was minimized 
using the conjugate gradient algorithm in DIANA for 250 iterations. The program performed 
these calculations with a CPU time of about 50 s per iteration, and on average the R-factor was 

reduced by 22%. 

DISCUSSION 

Empirical criteria, such as the comparison of corresponding NMR structures in solution and 
X-ray crystal structures (e.g., Kline et al., 1988; Billeter et al., 1989) have clearly demonstrated 
that good-quality NMR structures of proteins can be obtained based on the initial slope approxi- 
mation (Gordon and Wiithrich, 1978; Wagner and Wfithrich, 1979; Anil Kumar et al., 1981) for 
the interpretation of NOESY data. Nonetheless, as mentioned in the Introduction, in this ap- 
proach both spin diffusion and internal mobility of the molecular structure can, in principle, con- 
tribute to systematic deviations of the NMR structure from the actual molecular conformation. 
This was also confirmed by the tests performed in this paper with the polypeptide (20) using dis- 
tance geometry calculations (Table 2). The extension of the software package DIANA by term (6) 
should be useful in assessing the aforementioned systematic deviations, and has the potential of 
producing structures that are devoid of such shortcomings. With regard to practical applications, 
it is of particular interest that with the extended version of the program DIANA, both complete 
relaxation matrix refinement and distance geometry structure calculations can be performed 

within a single program. 
The basis of the program DIANA is the efficient minimization of all terms of the target function 

in dihedral angle space. Compared to minimization in Cartesian coordinate space, the number of 
degrees of freedom is thus significantly reduced. For example, in the 15-residue polypeptide chain 
(20) there are 69 and 768 degrees of freedom in dihedral angle space and in Cartesian space, re- 
spectively, and in the inhibitor K the corresponding numbers are 252 and 3315. Although the 
complete evaluation of the derivatives is nonetheless computationally demanding, the presently 
introduced filter technique contributes greatly to making the complete relaxation matrix refine- 
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ment method a practical procedure. Its functionality has been demonstrated with the examples 
listed in Table 1. In particular, the simulated refinements of the helical polypeptide (20) illustrate 
that the technique has a large convergence radius. Nonetheless, a complete relaxation matrix re- 
finement is about 100 times more CPU-intensive than a standard distance geometry calculation, 
and it remains to be seen whether the improvements of the structure determination warrant this 
extra expense. The following are some indications of ways in which a complete relaxation matrix 
refinement with the extended version of the program DIANA could profitably be applied in con- 
junction with other computational techniques. 

Previously, it has been proposed (Keepers and James, 1984; Boelens et al ,  1989) that relaxation 
matrix refinement might be used to improve the NOE distance constraints for subsequent distance 
geometry or restrained molecular dynamics calculations. On general grounds, we would suggest 
rather to use distance geometry calculations with conservative upper limit distance constraints for 
the initial structural interpretation of the NMR data (Kline et al., 1988; G/intert et al., 1991b), 
and then subject a set of distance geometry structures to a complete relaxation matrix refinement. 
In the aforementioned trial refinements of a group of distance geometry structures of the inhibitor 
K, we observed that the intraresidue NOE intensities were to a large extent satisfied at the expense 
of the interresidue NOEs. The reason for this behaviour is the heavy weight with which high NOE 
intensities are treated in the term T of Eq. (6). These observations suggest that a combined input 
of conservatively calibrated distance constraints and the experimental NOE intensities might be 
advantageous, since the distance constraints would effectively prevent falsification of weak NOE 
intensities by the relaxation matrix treatment. This combined input strategy could be further re- 
fined, for example, by eliminating in the minimization with the term (6) those NOE intensities 
which arise from flexible parts of the protein molecule (Dyson et al., 1988; Kessler et al., 1988; 
Torda et al., 1990), as would be indicated by additional measurements of Ti, T2 or scalar coupling 
constants. 

In the present implementation of the complete relaxation matrix refinement in the extended 
DIANA program, we greatly simplified the problem to be solved by assuming that all NOE in- 
tensities might be fitted to a single rigid structure, and that one isotropic rotational tumbling time 
can be used for all protons. Clearly, the computational demands will be further increased when 
more realistic models allowing for anisotropic overall rotation and additional intramolecular mo- 
tions are used. Although it remains to be seen whether such calculations are warranted in the day- 
to-day determination of NMR structures of proteins, they should be applied to properly evaluate 
the effects of using less demanding, approximate treatments. The presently described extended 
version of the DIANA program should be a useful tool in such endeavours. 
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